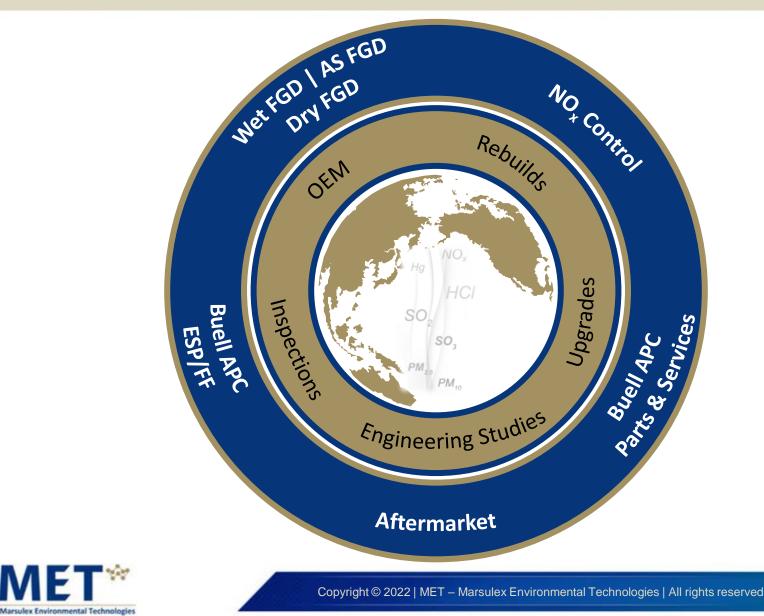


Flue Gas Desulfurization - Process Overview


Presented by:

Mike Hammer Senior Process Engineer Marsulex Environmental Technologies

MET - Your Full Service AQC Solutions Provider

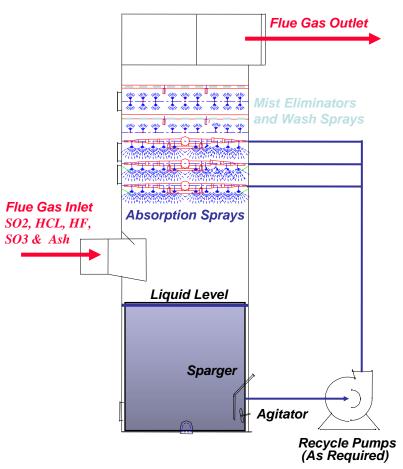
Brief History

- <u>1934:</u> Buell Engineering Company Mechanical Collectors
- <u>1950 -1960s</u>: Buell ESP & fabric filter product lines added
- Invirotech acquired Buell
- I981: Envirotech's Buell + Chemico FGD Divisions acquired by General Electric and incorporated as General Electric Environmental Services Inc (GEESI)
- Isometry in the second seco
- 2019: Kraft Powercon purchases MET, Thermax awarded first MET Licensed WFGD Contract in India

Overview of Business – Summary of Services

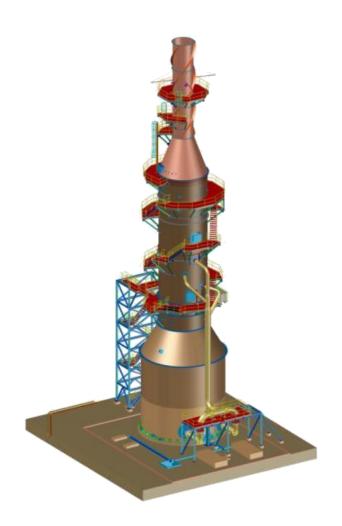
Installed Base

Traditional Flue Gas Desulphurization	Ammonium Sulfate FGD Technology	FGD Upgrades & Associated Services	Particulate Control	Selective Catalytic Reduction
105,210 MW	2,250 MW	4,195 MW*	75,000+ MW	26,000 MW (4,000 USA)
 Wet and Dry FGD solutions Utilizing reagents such as lime, limestone, and sodium Worldwide installations 	 Proprietary and patented SO₂ technology using ammonia as the reagent Valuable crop fertilizer by product provides pay back to owner Commercially demonstrated for over seventeen years. Operating Units in U.S.A., Canada, China and Poland 	 Performance upgrades on existing Wet and Dry FGD Aftermarket services for Wet and Dry FGD systems Engineering studies Field advisory services and training 	 Electrostatic Precipitators Fabric Filters Associated parts and upgrade and repair services Engineering studies Field advisory services and training 	 Offer Selective Catalytic Reduction (SCR) technology licensed through Termokimik Reduces more than 90% of NO_x from flue gas emissions and
International FGD Licensing				
• MET licenses the right to use MET technology in multiple international markets		udining	showcases a solid installation base around the world	


* FGD upgrade and associated services are not included in the total megawatt listing to avoid duplicity.

Wet Scrubber Design Capabilities

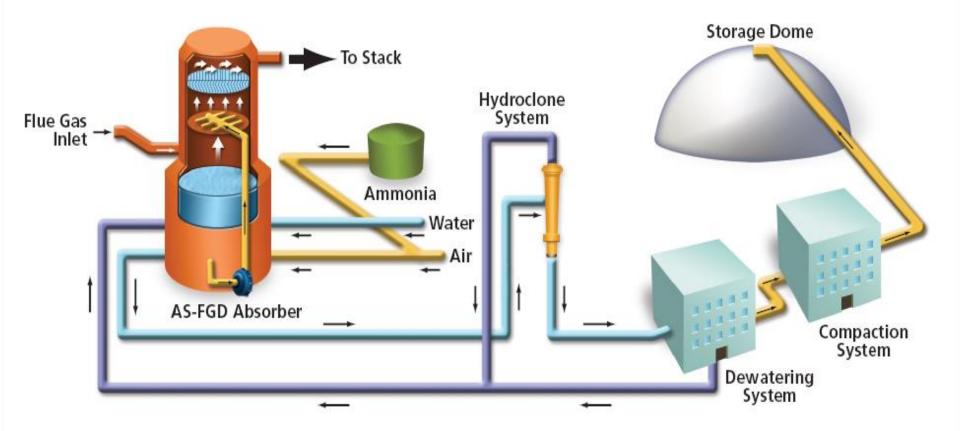
- SO₂ Sulfur Dioxide Will be readily absorbed
 - 95+% removal efficiency
 - Converted to Ammonium Sulfate
- HCI Hydrogen Chloride Will be easily absorbed
 - 99+% removal efficiency
 - Converted to Ammonium Chloride
- F Hydrogen Fluoride Will be easily absorbed
 - 99+% removal efficiency
 - Converted to Ammonium Fluoride
 - High solubility
- SO₃– Sulfur Trioxide Will be partially absorbed
 - ~20-50% removal efficiency
 - Converted to an Ammonium Sulfate
 Aerosol
- Fly Ash Will be partially removed
 - ~30-70% removal efficiency
 - Can impact Product Purity

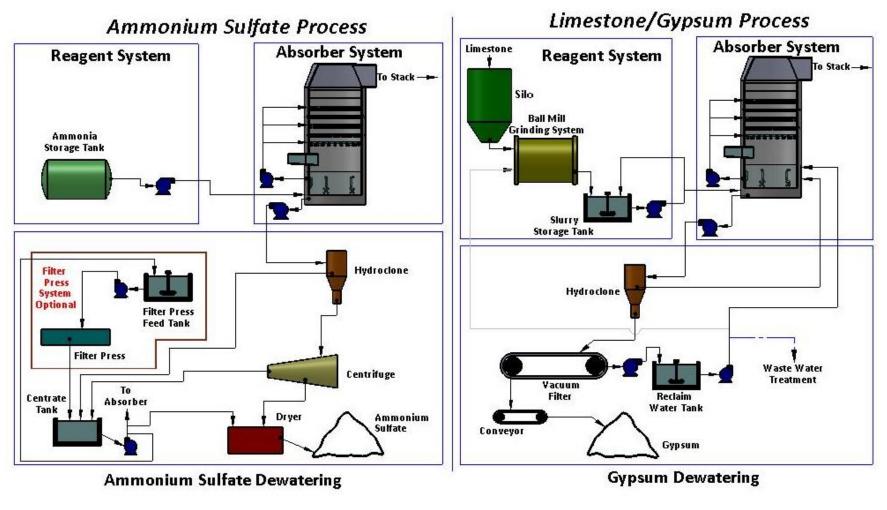

AGENDA

Overview of the WFGD Process

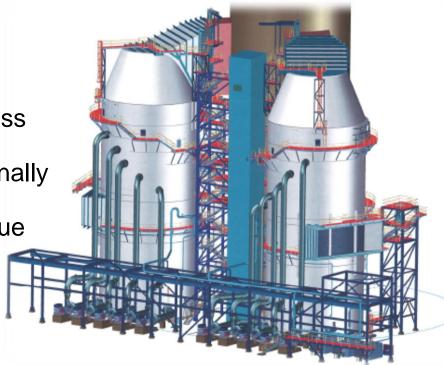
Basic Chemistry

Typical FGD Processes


Summary


Ammonium Sulfate Process

Same Proven Equipment – Different Reagent



FGD Reagent comparison

Gaseous SO₂ is convert to either a solid by-product or a liquid waste stream

- Sodium Throwaway process
 - Sodium Sulfite or Sulfate
 - No commercial Value
- Calcium Gypsum Based process
 - Most widely used internationally
 - Byproduct marginal value
- Ammonia Ammonium Sulfate
 - Commercial Fertilizer

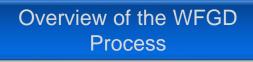
Advantages of MET Ammonium Sulfate Process

- Commercially proven for over 2 decades
 - AS FGD system designed with standard equipment redundancy
- Site specific economics including offset of operating costs, potentially lower fuel costs, lower capital costs
- Ammonia scrubber typically does not generate a purge stream to WWT
- Ammonia scrubber produces high value byproduct versus low value gypsum or sulfite waste sludge

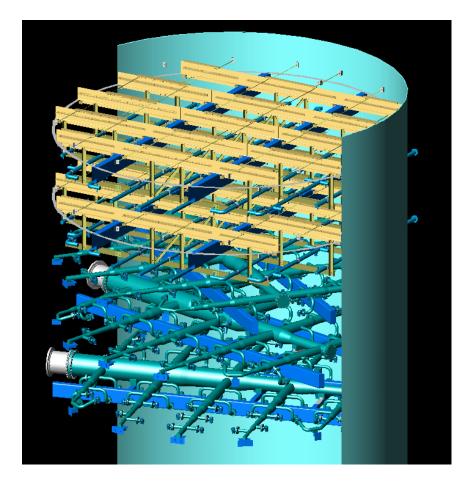
Ammonium Sulfate Process

Offers significant advantages over traditional flue gas scrubbing

- Economics enhanced with low cost, high sulfur fuels
- Reduces/eliminates solid and liquid waste issues/costs
- Valuable AS fertilizer provides revenue stream
- No CO₂ greenhouse gas is produced in the AS FGD <u>unlike</u> conventional limestone FGD (where ~0.7 ton CO₂ is released per ton SO₂ absorbed.)


Ammonia Sulfate Final Product

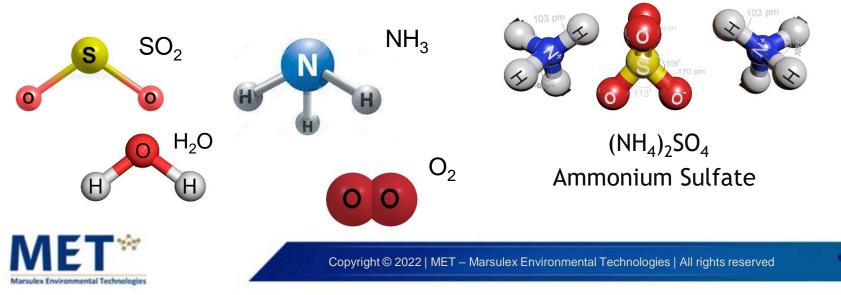
Compacted (Left) and Standard Product (Right)



Basic Chemistry

Typical FGD Processes

Summary

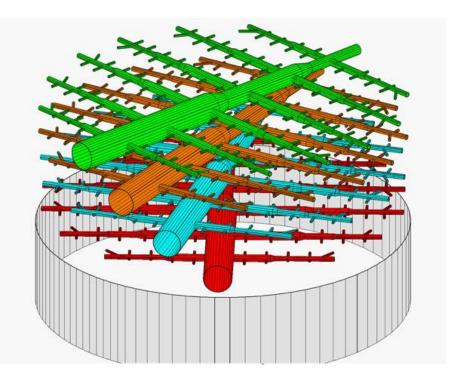


Ammonia Sulfate Chemistry

$$SO_2 + 2NH_3 + H_2O \longrightarrow (NH_4)_2SO_3$$

 $(NH_4)_2SO_3 + 1/2O_2 \longrightarrow (NH_4)_2SO_4$

- For every Kilogram of SO₂ removed:
 - ~One-half kilograms of Ammonia reagent consumed
 - ~Two kilograms of marketable Ammonium Sulfate produced
- One kilogram of Ammonia generates ~four kilograms of Ammonium Sulfate fertilizer



(1)

(2)

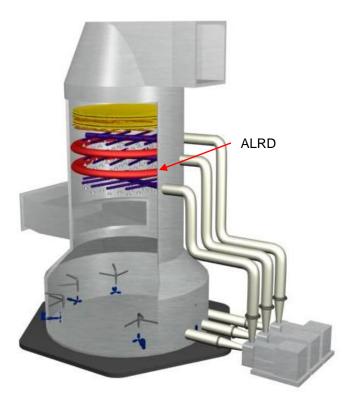
Wet Scrubber Fundamentals

Typical Absorber Design Considerations

Open Spray Tower Design Considerations

- Outlet Emission Required
 - SO2
 - Particulate
 - Ammonia
- Nominal 3.0 4.0 mps saturated gas velocity in tower
- Recycle Residence Time minimum of 3.5 minutes
- Minimum Oxidation Stoichiometry of 2

Typical WFGD Design


Operations and Design

Operations

- Gas distribution & wet/dry interface at Inlet
- Gas-Liquid contact in spray zone
- ALRD Wall Rings
- Liquid-Gas separation with mist eliminators
- Oxidation & dissolution in reaction tank

System Design

- Low lifecycle cost
- High availability

Ammonia Sulfate Final Product

 Purity - 99+% Nitrogen - 21.0 - 21.1% Sulfur - 24.0 - 24.2% Water Insoluble Matter - < 0.1% Color - White to Beige Heavy Metals - < 10 ppm 	 <u>Residual Moisture</u> Multiple Drying Steps Less Than 1.0 wt% Moisture Coated with Anti-caking Agent
Exceeds Fertilizer Specifications	Excellent Storage & Handling
 Particle Size 1.0 mm - 3.5 mm 240 - 275 SGN Uniformity Index - 45 - 50 Ideal for Bulk Blending & Direct Application 	 Hardness Demonstrated Compaction Technology Expertise in Product Hardening Technology 1 - 3% Attrition in Industry Test Can be Handled and Transported Without Generating Dust

Overview of the WFGD Process

Basic Chemistry

Typical WFGD Processes

Summary

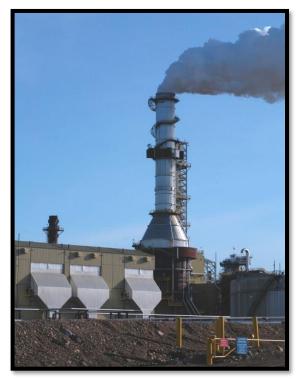


Dakota Gasification Company

350 MW equivalent | Ammonium Sulfate WFGD

DGC is a subsidiary of Basin Electric and was a partner in the first commercial application of MET's patented ammonium sulfate FGD technology. DGC selected the MET process over conventional limestone scrubbing.

Dakota Gasification Company North Dakota


Fuel:	Heavy Residue
% Sulfur:	5.0% Design
Inlet Gas Volume: (acfm)	1,187,000
Reagent:	Ammonia
Design AS Production (Ton/year):	145,000
SO ₂ Removal Efficiency:	98%
Absorber Type:	Spray Tower
AS-FGD Start-up	1996

Syncrude – Alberta Canada

315 MW equilavent | Ammonium Sulfate WFGD

UE-1 Expansion Pla	nt
Alberta, Canada	

Source:	Coker/CO boiler offgas	
Scope:	Ammonia FGD & fertilizer plant	
Inlet Gas Volume: (acfm)	1,300,000	
Byproduct:	109,000 te/yr granular AS fertilizer	
Absorber Type:	Spray Tower	
SO ₂ Removal Efficiency:	95+%	
Startup Date:	2006	
Fertilizer Plant:	Built, owned, operated and maintained by Marsulex Inc. until sold to Chemtrade Logistics	

SINOPEC - China

2 x 200 MW | Ammonium Sulfate WFGD

Qilu Thermal Plants Shandong Province, China

Fuel:	Coal Fired Boiler
Scope:	EPC
Inlet Gas Volume:	1,162,547 Kg/Hr
Absorber Type:	Open Spray Tower
SO ₂ Removal Efficiency:	98%
Startup Date:	Unit 2: Jul '09 Unit 1: Sep '09
Byproduct:	Standard Grade Ammonium Sulfate

Zaklady Azotowe Pulawy Poland

Combined Heating and Power Plant | Pulawy, Poland

Source:	Coal-Fired Boilers 300 MW
Scope:	Technology, engineering, key components and field services
Inlet Gas Volume:	1,365,000 acfm 1,457,000 Nm3/hr
Byproduct:	Ammonium Sulfate Fertilizer
Absorber Type:	Open Spray Tower
SO ₂ Removal Efficiency:	>93.5%
Scheduled Startup Date:	4 th Quarter 2011

Groupa Azoty Police Poland

	Source:	Coal-Fired Boilers 110 MW
	Scope:	Technology, engineering, key components and field services
	Inlet Gas Volume:	504,000 ACFM 538,000 Nm3/hr
	Byproduct:	Ammonium Sulfate Fertilizer
	Absorber Type:	Open Spray Tower
	SO ₂ Removal Efficiency:	>95%
	Startup Date:	2017

Sanders Lead Smelter - Alabama

Source:	Lead Smelter OFF Gas Equivalent 50 MW gas flow
Scope:	Technology, engineering, key components and field services
Inlet Gas Volume:	220,000 ACFM 252,000 Nm3/hr
Byproduct:	Ammonium Sulfate Fertilizer
Absorber Type:	Open Spray Tower
SO ₂ Removal Efficiency:	>95%
Startup Date:	2019

