Curtailment of Sox & NOx in Thermal Power plants
A thorough update on the adopted measures, ground realities and progress so far
Dated: 17/08/2022 A thorough update on the adopted measures, ground realities and progress so far Dated: 17/08/2022

Contents

-
-
- **Contents**
1. Overview of various types of FGD System
2. Factors to be considered for technology selection
3. Design basis of a typical limestone based FGD system **2. Factors 1. Factors 1. Factors to be considered for technology selection**
2. Factors to be considered for technology selection
3. Design basis of a typical limestone based FGD system
4. Basic Chemistry of FGD System **2.** Overview of various types of FGD System
2. Factors to be considered for technology selection
3. Design basis of a typical limestone based FGD system
4. Basic Chemistry of FGD System
5. Wet FGD Process 1. Overview of various types of FGD
2. Factors to be considered for techr
3. Design basis of a typical limestone
4. Basic Chemistry of FGD System
5. Wet FGD Process
6. Pre Combustion & Post Combustic
-
-
- **Contents
1. Overview of various types of FGD System
2. Factors to be considered for technology selection
3. Design basis of a typical limestone based FGD system
4. Basic Chemistry of FGD System
5. Wet FGD Process
6. Pre C** 1. Overview of various types of FGD System
2. Factors to be considered for technology selection
3. Design basis of a typical limestone based FGD system
4. Basic Chemistry of FGD System
5. Wet FGD Process
6. Pre Combustion

Top 25 emitter countries of anthropogenic SO2 in 2019

Center for Research on Energy and Clean Air & Greenpeace India. India: 5953 k Tons , Russia: 3362, China 2156

Water norms:

- All plants with once through cycle (OTC) shall install Cooling Tower (CT) and
- All existing CT based plants shall reduce specific water consumption up-to-
- New plants to be installed after 01/01/2017 shall have to meet specific water consumption of 2.5 m3/MWh & achieve zero water balance.

Types of FGD Process

- Types of FGD Process
i. Ammonia based Desulphurization System
ii. Sea water FGD system
iii. Circulating Dry Scrubber Technology Types of FGD Process
i. Ammonia based Desulphurization System
ii. Sea water FGD system
iii. Circulating Dry Scrubber Technology
iv. Dry Sorbent Injection (DSI) system Types of FGD Process

i. Ammonia based Desulphurization System

ii. Sea water FGD system

iii. Circulating Dry Scrubber Technology

iv. Dry Sorbent Injection (DSI) system

v. Wet Flue Gas Desulphurization System Types of FGD Process
i. Ammonia based Desulphurization System
ii. Sea water FGD system
iii. Circulating Dry Scrubber Technology
iv. Dry Sorbent Injection (DSI) system
v. Wet Flue Gas Desulphurization System
-
-
-
- i. Ammonia based Desulphurization Syst
ii. Sea water FGD system
iii. Circulating Dry Scrubber Technology
iv. Dry Sorbent Injection (DSI) system
v. Wet Flue Gas Desulphurization System

 (2) (NH₄)2SO₃ + $V_2O_2 \rightarrow (NH_4)2SO_4$

- Ammonia FGD $\frac{1}{2}$ $\frac{1}{2}$ NH3, fg, oxidizing air and process
water enter an absorber containing
multiple levels of spray nozzles.
The nozzles generate fine droplets of
NH3 -containing reagent to ensure
	- NH3, fg, oxidizing air and process
water enter an absorber containing
multiple levels of spray nozzles.
The nozzles generate fine droplets of
NH3 -containing reagent to ensure
intimate contact of reagent with → NH3, fg, oxidizing air and process
water enter an absorber containing
multiple levels of spray nozzles.
→ The nozzles generate fine droplets of
NH3 -containing reagent to ensure
intimate contact of reagent with
incoming NH3, fg, oxidizing air and process
water enter an absorber containing
multiple levels of spray nozzles.
The nozzles generate fine droplets of
NH3 -containing reagent to ensure
intimate contact of reagent with
incoming fg. NH3, fg, oxidizing air and process
water enter an absorber containing
multiple levels of spray nozzles.
The nozzles generate fine droplets of
NH3 -containing reagent to ensure
intimate contact of reagent with
incoming fg. NH3, fg, oxidizing air and process
water enter an absorber containing
multiple levels of spray nozzles.
The nozzles generate fine droplets of
NH3 -containing reagent to ensure
intimate contact of reagent with
incoming fg. → NH3, fg, oxidizing air and process
water enter an absorber containing
multiple levels of spray nozzles.

→ The nozzles generate fine droplets of
NH3 -containing reagent to ensure
intimate contact of reagent with
incomi oxidizing air and process
nter an absorber containing
levels of spray nozzles.
les generate fine droplets of
ntaining reagent to ensure
contact of reagent with
ifg.
in the flue gas stream reacts
3 in the upper half of the
 NH3, fg, oxidizing air and process
water enter an absorber containing
multiple levels of spray nozzles.
The nozzles generate fine droplets of
NH3 -containing reagent to ensure
intimate contact of reagent with
incoming fg.
 NH3, fg, oxidizing air and process
water enter an absorber containing
multiple levels of spray nozzles.
The nozzles generate fine droplets of
NH3 -containing reagent to ensure
intimate contact of reagent with
incoming fg.

	-
	- → NH3, fg, oxidizing air and process
water enter an absorber containing
multiple levels of spray nozzles.

	→ The nozzles generate fine droplets of
NH3 -containing reagent to ensure
intimate contact of reagent with
incomi NH3, fg, oxidizing air and process
water enter an absorber containing
multiple levels of spray nozzles.
The nozzles generate fine droplets of
NH3 -containing reagent to ensure
intimate contact of reagent with
incoming fg.
 water enter an absorber containing
multiple levels of spray nozzles.
The nozzles generate fine droplets of
NH3 -containing reagent to ensure
intimate contact of reagent with
incoming fg.
The SO_2 in the flue gas stream r multiple levels of spray nozzles.
The nozzles generate fine droplets of
NH3 -containing reagent to ensure
intimate contact of reagent with
incoming fg.
The SO₂ in the flue gas stream reacts
with NH3 in the upper half of
	- \bullet The nozzles generate fine droplets of

	NH3 -containing reagent to ensure

	intimate contact of reagent with

	incoming fg.
 \bullet The SO₂ in the flue gas stream reacts

	with NH3 in the upper half of the

	vessel to NH3 -containing reagent to ensure
intimate contact of reagent with
incoming fg.
The SO₂ in the flue gas stream reacts
with NH3 in the upper half of the
vessel to produce **ammonium sulfite.**
The bottom of the absorber ves intimate contact of reagent with
incoming fg.
The SO₂ in the flue gas stream reacts
with NH3 in the upper half of the
vessel to produce **ammonium sulfite.**
The bottom of the absorber vessel
serves as an **oxidation tank** incoming fg.
The SO₂ in the flue gas stream reacts
with NH3 in the upper half of the
vessel to produce **ammonium sulfite.**
The bottom of the absorber vessel
serves as an **oxidation tank** where air
oxidizes the ammonium **◆ The SO₂ in the flue gas stream reacts**
with NH3 in the upper half of the
vessel to produce **ammonium sulfite.**
◆ The bottom of the absorber vessel
serves as an **oxidation tank** where air
oxidizes the ammonium sulfit
	- with NH3 in the upper half of the
vessel to produce **ammonium sulfite.**
The bottom of the absorber vessel
serves as an **oxidation tank** where air
oxidizes the ammonium sulfite to
ammonium sulfate.
The resulting ammonium su vessel to produce **ammonium sulfite.**
The bottom of the absorber vessel
serves as an **oxidation tank** where air
oxidizes the ammonium sulfite to
ammonium sulfate.
The resulting ammonium sulfate
solution is pumped back to t The bottom of the absorber vessel
serves as an oxidation tank where air
oxidizes the ammonium sulfite to
ammonium sulfate.
The resulting ammonium sulfate
solution is pumped back to the spray
nozzle headers at multiple leve serves as an **oxidation tank** where air
oxidizes the ammonium sulfite to
ammonium sulfate.
The resulting ammonium sulfate
solution is pumped back to the spray
nozzle headers at multiple levels in
the absorber.
Prior to the

Sea water FGD

CaHCO3 + NaHCO3 + SO2 = Na2SO3 + CaSO3 + H2O + CO2 Na2SO3 + CaSO3 + O2 = Na2SO4 + CaSOO4

Circulating Dry Scrubber (CDS) technology (Semi dry type).

CDS: Circulating Dry Scrubber

- **echnology** (Semi dry type).

 Flue gas passes through parallel venturies

mixing with **hydrated lime**, water and
 recycled solids to create a fluidized bed

where the reaction of the calcium with the hnology (Semi dry type).
Flue gas passes through parallel venturies
mixing with hydrated lime, water and
recycled solids to create a fluidized bed
where the reaction of the calcium with the
SO₂ and SO₂ to form CaSO3 an **hnology** (semi dry type).
Flue gas passes through parallel venturies
mixing with **hydrated lime**, water and
recycled solids to create a fluidized bed
where the reaction of the calcium with the
SO₂ and SO₃ to form C **hnology** (semi dry type).
Flue gas passes through parallel venturies
mixing with **hydrated lime**, water and
recycled solids to create a fluidized bed
where the reaction of the calcium with the
SO₂ and SO₃ to form C $SO₂$ and $SO₃$ to form CaSO3 and CaSO4 takes **Solution** (Semi dry type).

gas passes through parallel venturies

ng with **hydrated lime**, water and

cled solids to create a fluidized bed

re the reaction of the calcium with the

and SO₃ to form CaSO3 and CaSO4 tak Semi dry type).

Semi dry type).

Sses through parallel venturies

ids to create a fluidized bed

Faction of the calcium with the

to form CaSO3 and CaSO4 takes

dded as a dry powder into the

allow for adequate mixing wit place. **echnology** (semi dry type).

• Flue gas passes through parallel venturies

mixing with **hydrated lime**, water and

recycled solids to create a fluidized bed

where the reaction of the calcium with the

SO₂ and SO₃ to **hnology** (semi dry type).

Flue gas passes through parallel venturies

mixing with **hydrated lime**, water and
 recycled solids to create a fluidized bed

where the reaction of the calcium with the

SO₂ and SO₃ to f **hnology** (Semi dry type).

Flue gas passes through parallel venturies

mixing with **hydrated lime**, water and
 recycled solids to create a fluidized bed

where the reaction of the calcium with the

SO₂ and SO₃ to f • Flue gas passes through parallel venturies
mixing with hydrated lime, water and
recycled solids to create a fluidized bed
where the reaction of the calcium with the
 SO_2 and SO_3 to form CaSO3 and CaSO4 takes
place.
• Flue gas passes through parallel venturies
mixing with **hydrated lime**, water and
recycled solids to create a fluidized bed
where the reaction of the calcium with the
 SO_2 and SO_3 to form CaSO3 and CaSO4 takes
place. mixing with hydrated lime, water and
recycled solids to create a fluidized bed
where the reaction of the calcium with the
 SO_2 and SO_3 to form CaSO3 and CaSO4 takes
place.
Reagent is added as a dry powder into the
ab
-
- temperature. where the reaction of the calcium with the
 SO_2 and SO_3 to form CaSO3 and CaSO4 takes

place.

• **Reagent is added as a dry powder** into the

absorber to allow for adequate mixing with

the flue gas.

• **Water is inje** SO_2 and SO_3 to form CaSO3 and CaSO4 takes
place.
Reagent is added as a dry powder into the
absorber to allow for adequate mixing with
the flue gas.
Water is injected independently into the
absorber, **cooling the f** place.
Reagent is added as a dry powder into the
absorber to allow for adequate mixing with
the flue gas.
Water is injected independently into the
absorber, **cooling the flue gas to a specified
temperature** range above absorber to allow for adequate mixing with

the flue gas.

• Water is injected independently into the

absorber, cooling the flue gas to a specified

temperature range above the saturation

temperature.

• The flue gas, co the flue gas.
Water is injected independently into the
absorber, cooling the flue gas to a specified
temperature range above the saturation
temperature.
The flue gas, containing CaSO3 and CaSO4
and fly ash, then travels to
- system.
-

Dry Sorbent Injection System schematic Diagram

Sorbent : Sodium Bicarbonate: 2NaHCO3 + SO2 + 1/2 O2 = Na2SO4 + 2CO2 + H2O Sorbent: Sodium Carbonate: Na2CO3 + SO2 + 1/2 O2 = Na2SO4 + CO2

Sodium Bicarbonate (is injected in 2nd pass before APH)

Factors considered:

-
- **1: Sulphur Content in Coal.**
1: Sulphur Content in Coal.
2: SO₂ removal Efficiency requirement of par
3: Availability of Reagent (if any). 2: SO₂ removal Efficiency requirement of particular plant.
- 3: Availability of Reagent (if any).
- 4: Disposal and handling of By-product.
- 5: Locational/Geographical factors of the plant.
- 6: Plant life.
- 7: Space requirement for FGD facility.

Design Basis

Design Basis
The Flue Gas Handling System is designed to handle 100% of the boiler
Filuent flue gas & is based on the following:
Filue gas flow at FGD inlet **Example 3 All The Fluentian State of Person State Times State Times State State of the set of the beatled on the following:**
• Flue gas flow at FGD inlet
• Flue gas temp at FGD inlet
• Flue gas temp at FGD inlet **Design Basis**
The Flue Gas Handling System is designed to handle 100
effluent flue gas & is based on the following:
Flue gas flow at FGD inlet
Flue gas temp at FGD inlet
Type of coal used. **Design Basis**

The Flue Gas Handling System is designed to handle 1009

effluent flue gas & is based on the following:

Flue gas flow at FGD inlet

Flue gas temp at FGD inlet

Flue gas temp at FGD inlet

Flue gas temp at **Design Basis**

The Flue Gas Handling System is designed to haive of fluent flue gas & is based on the following:

• Flue gas flow at FGD inlet

• Flue gas temp at FGD inlet

• Type of coal used.

• Sulphur content in coal The Flue Gas Handling System is designed to handle 10

The Flue Gas Handling System is designed to handle 10

• Flue gas flow at FGD inlet

• Flue gas temp at FGD inlet

• Type of coal used.

• Sulphur content in coal

• S The Flue Gas Handling System is designed to handle 100

effluent flue gas & is based on the following:

• Flue gas flow at FGD inlet

• Type of coal used.

• Sulphur content in coal

• SO2 content at inlet (mg/Nm3)

• SO2 The Flue Gas Handling System is designed to handle 100% of the boiler
effluent flue gas & is based on the following:

• Flue gas flow at FGD inlet

• Flue gas temp at FGD inlet

• Type of coal used.

• Sulphur content in c

-
-
-
-
-
-

Gypsum by-product

The purity of the Gypsum by-product
The purity of the Gypsum by-product of a typical FGD system:
The purity of 90 % minimum

Gypsum by-product
The purity of the Gypsum by-product of a typical FGD syste
Gypsum purity of 90 % minimum
Moisture content of 10 % maximum
Chloride content 100 ppm maximum **Gypsum by-product**
The purity of the Gypsum by-product of a typical FGD system:
 **Cypsum purity of 90 % minimum

Moisture content of 10 % maximum

Chloride content 100 ppm maximum** Gypsum by-product
The purity of the Gypsum by-product of a typical FGD system:

"Gypsum purity of 90 % minimum

"Moisture content of 10 % maximum

"Chloride content 100 ppm maximum

for the specified range of specified coa The purity of the Gypsum by-product of a typical FGD system:
 -Gypsum purity of 90 % minimum
 -Moisture content of 10 % maximum
 -Chloride content 100 ppm maximum

for the specified range of specified coal(s) and des

Basic chemistry of FGD system

Chemical reaction

 $CaCO₃$ (Limestone) + H₂O = Ca(OH)₂ + CO₂ $Ca(OH)₂+SO₂= CasO₃+H₂O$ CaSO_{3} + 3H₂O + ½ O₂= CaSO₄.2H₂O(Gypsum)+ H₂

Overall SO_2 + CaCO₃ + 2H₂O + 1/2O2 = CaSO₄.2H₂O + CO₂

Lime stone based Wet Flue Gas Desulphurization System

Overall System Description

-
-
- **Overall System Description**
1. Flue Gas handling system
2. Limestone handling system
3. Reagent preparation & Reagent feed system
- **2. Concrall System Description**
2. Limestone handling system
2. Limestone handling system
3. Reagent preparation & Reagent feed system
4. Absorber, Reaction tank, Mist eliminator system, Recycle Spray System, Forced Oxi **Overall System Description
1. Flue Gas handling system
2. Limestone handling system
3. Reagent preparation & Reagent feed system
4. Absorber, _{Reaction tank,} Mist eliminator system, Recycle Spray System, Forced Oxidation 4.** Absorber, Reaction tank, Mist eliminator system, Recycle Spray System, Forced Oxidation System, Aux Storage system, Rection tank, Mist eliminator system, Recycle Spray System, Forced Oxidation System, Aux Storage syst storage system. **Overall System Description
1. Flue Gas handling system
2. Limestone handling system
3. Reagent preparation & Reagent feed system
4. Absorber, Reation tank, Mist eliminator system, Recycle Spray System, Forced Oxidation Sy** 1. Flue Gas handling system

2. Limestone handling system

3. Reagent preparation & Reagent feed system

4. Absorber, Reaction tank, Mist eliminator system, Recycle Spray System, Forced

5. Primary & Secondary Dewatering S 1. Flue Gas handling system
2. Limestone handling system
3. Reagent preparation & Reagent feed system
4. Absorber, Reaction tank, Mist eliminator system, Recycle Spray System,
5. Primary & Secondary Dewatering System
6. Gy
-
-
-

Flue Gas Handling System

FUNCTION:

 \clubsuit It carries the untreated flue gases laden with SO₂ to the absorber for treatment and then to the stack for distribution into the atmosphere.

- \triangle Monitoring equipment to be provided for measurement of the
- \blacksquare SO₂ contained in the flue gas entering the WFGD system
- SO2 level leaving the WFGD system.

This information determines the SO₂ removal efficiency.

Flue Gas Handling System

Why Booster fans?

- **Why Booster fans ?**
 The addition of the ductwork, GGH and WFGD system equipment

into the flue gas path imposes a higher draft demand on the

existing ID fans beyond that for which they were originally **into the flue gas path imposes and WFGD** system equipment
into the flue gas path imposes a higher draft demand on the
existing ID fans beyond that for which they were originally
designed. **Exhibire 19 Aller Why Booster fans ?**
The addition of the ductwork, GGH and WFGD system equipment
into the flue gas path imposes a higher draft demand on the
existing ID fans beyond that for which they were originally
des designed. The addition of the ductwork, GGH and WFGD system equipment
into the flue gas path imposes a higher draft demand on the
existing ID fans beyond that for which they were originally
designed.

• To satisfy increased dema The addition of the ductwork, GGH and WFGD system equipment
into the flue gas path imposes a higher draft demand on the
existing ID fans beyond that for which they were originally
designed.
To satisfy increased demand, the The addition of the ductwork, GGH and WFGD system equipment
into the flue gas path imposes a higher draft demand on the
existing ID fans beyond that for which they were originally
designed.
To satisfy increased demand, the
-

GGH: Gas to Gas Heater WFGD: Wet Flue Gas Desulphurization

- Limestone Hand

The purpose:

To transport the limestone from

hoppers through a limestone crushi Limestone Handling System

■ To transport the limestone from delivery trucks to the unloading

■ To store the limestone in Silo and deliver the same for the reagent

■ To store the limestone in Silo and deliver the same f
- **Limestone Handling System**
 e purpose:

To transport the limestone from delivery trucks to the unloading

hoppers through a limestone crushing system.

To store the limestone in Silo and deliver the same for the reagent The purpose:

• To transport the limestone from delivery trucks to the unloading

hoppers through a limestone crushing system.

• To store the limestone in Silo and deliver the same for the reagent

preparation process. **Example 2018**
To transport the limestone from delivery transport the limestone crushing system.
To store the limestone in Silo and deliver the
preparation process.

Equipment in Limestone Handling System **Equipment in Limestone Handling Syste

Equipment:
• Unloading hopper
• Belt Conveyor
• Belt Feeders Equipment in Limestone Handling

Equipment:
• Unloading hopper
• Belt Conveyor
• Belt Feeders
• Limestone crusher**

Equipment:

-
-
-
-
- Equipment in Limestone Handling
 Equipment:

 Unloading hopper

 Belt Feeders

 Limestone crusher

 Bucket elevator (transfers limestone fr **Equipment in Limestone Handling Syste

Equipment:

• Unloading hopper

• Belt Conveyor

• Belt Feeders

• Limestone crusher

• Bucket elevator (transfers limestone from cru

• Crushed lime stone silo**
-
- Equipment in Limestone Handling System
• Unloading hopper
• Belt Conveyor
• Belt Feeders
• Limestone crusher
• Bucket elevator (transfers limestone from crusher to Silo)
• Crushed lime stone silo
• Bucket elevator (trans Frame System

• Comparent:

• Chiloading hopper

• Belt Conveyor

• Belt Feeders

• Limestone crusher

• Bucket elevator (transfers limestone from crusher to S

• Crushed lime stone silo

• Bucket elevator (transfers crush • **Lyapment in Limestone Handing Jystem**
• Unloading hopper
• Belt Conveyor
• Belt Feeders
• Limestone crusher
• Bucket elevator (transfers limestone from crusher to Silo)
• Crushed lime stone silo
• Bucket elevator (trans Silo) • Unloading hopper
• Belt Conveyor
• Belt Feeders
• Limestone crusher
• Bucket elevator (transfers limestone fror
• Crushed lime stone silo
• Bucket elevator (transfers crushed lime
Silo)
• Screw Conveyor
• Belt weighers
• • Belt Conveyor
• Belt Feeders
• Limestone crusher
• Bucket elevator (transfers limestone fr
• Crushed lime stone silo
• Bucket elevator (transfers crushed lin
Silo)
• Screw Conveyor
• Belt weighers
• Magnetic Separators
• • Belt Feeders
• Limestone crusher
• Bucket elevator (transfers limestone from cr
• Crushed lime stone silo
• Bucket elevator (transfers crushed limesto
Silo)
• Screw Conveyor
• Belt weighers
• Magnetic Separators
• Metal • Limestone crusher
• Bucket elevator (transfers limestone from
• Crushed lime stone silo
• Bucket elevator (transfers crushed lime
Silo)
• Screw Conveyor
• Belt weighers
• Magnetic Separators
• Metal Detectors
• Rod gates • Bucket elevator (transfers limestone fr
• Crushed lime stone silo
• Bucket elevator (transfers crushed lin
Silo)
• Screw Conveyor
• Belt weighers
• Magnetic Separators
• Metal Detectors
• Rod gates
• Rack & Pinion gates • Crushed lime stone silo
• Bucket elevator (transfers crushed limestone f
Silo)
• Screw Conveyor
• Belt weighers
• Magnetic Separators
• Metal Detectors
• Rod gates
• Rack & Pinion gates
-
-
-
-
-
-

Flow Diagram of Limestone handling system**LIMESTONE INFORMATION BUCKET ELEVATOR CRUSHER** $(1+1)$ **CRUSHED** 12+2 $(1+1)$ 通常的用用 **LIMESTONE SILO** $(1+1)$ **CONVEYOR** $(1+1)$ Bucket <u>elevator (1+1)</u> **A comprison DAY BIN** SILO $(1+1)$ **LIMESTONE** WEIGH FEEDER $(1+1)$

Reagent Preparation System

Function:

- \triangle The production of Limestone slurry by crushing limestone stored in the Limestone Silo and mixing it with water.
- ❖ Limestone slurry is used in the absorber.
- The size of the limestone feed is reduced to a fine powder so as to increase the surface area of the limestone and this increases the reactivity of the reagent.
- Thus limestone is used more efficiently and use less limestone for a given amount of SO₂ removed.
- Mixing of the limestone with water forms the reagent slurry of desired density which neutralizes the SO₂ absorbed in the absorber.

Reagent Preparation System

- Lime stone, makeup water and mill product classifier underflow are fed to the inlet chute of the ball mill.
- Slurry of pulverized limestone overflows the ball mill & leaves through the gravity discharge chute.
- The product output passes 90 % through 325 mesh (44 micron) screen.

The Reagent Feed Tank : Allows the efficient operation of the Reagent Preparation System while providing makeup of reagent slurry to maintain the required slurry chemistry.

Top-mounted Reagent Feed Tank Agitator:

Maintains the reagent slurry in suspension by circulation & agitation. It keeps the reagent slurry from settling to the bottom of the Reagent Feed Tank when the limestone (calcium carbonate) concentration is as high as 30% (total suspended solids).

Reagent Feed Pump (1 +1) : Continuously circulates the reagent through the reagent feed loop back to the tank. Delivers reagent slurry to the Absorber, as and when needed to maintain the Absorber process chemistry.

Absorber including Reaction tank, Mist Eliminator Wash System, Recycle spray system & Forced Oxidation System

Absorber:

It is the vessel where SO2 is removed from the fg.

Absorber Open Spray Tower: (Also referred to as scrubber, wet

scrubber, open spray tower)

The upper part of the Absorber vessel where the slurry is sprayed, and the SO2 is absorbed and neutralized.

Recycle tank :

It is the lower part of the Absorber vessel where slurry is held and where some of the chemical processes take place.

• Functions:

limestone dissolution reactions & to promote gypsum crystal growth.

Recycle spray system

- Recycle spray system

So that the SO2 removal reaction can take

place. place.
- It brings the fg and the slurry into contact
so that the SO2 removal reaction can take
place.
The slurry is distributed evenly around the
tower by the Spray Nozzles designed to
achieve proper atomization of the recycle
slu
-

Mist Eliminator system

absorber.

Forced Oxidation System

- The Oxidation fans supply the compressed air to lances submerged in the Absorber Reaction Tank for the oxidation reaction.
• The oxidation air is quenched with adequate amount of raw water to avoid
- **Forced Oxidation System**
The Oxidation fans supply the compressed air to lances submerged in the
Absorber Reaction Tank for the oxidation reaction.
The oxidation air is quenched with adequate amount of raw water to avoid
 • The Oxidation fans supply the compressed air to lances submerged in the Absorber Reaction Tank for the oxidation reaction.
• The oxidation air is quenched with adequate amount of raw water to avoid nozzle plugging.
• The **Forced Oxidation Sy**
The Oxidation fans supply the compressed
Absorber Reaction Tank for the oxidation re
The oxidation air is quenched with adequate
nozzle plugging.
The Oxygen in air reacts with CaSO₃ and oxid
Some o
- .
- The Oxidation fans supply the compressed air to lances submerge

Absorber Reaction Tank for the oxidation reaction.

 The oxidation air is quenched with adequate amount of raw water

nozzle plugging.

 The Oxygen in a **Example 18 System**

ressed air to lances submerged in the

dequate amount of raw water to avoid

and oxidizes it to CaSO₄.

the absorber is naturally oxidized to

however, the combination of CaSO₃

ludge with water. • The Oxidation fans supply the compressed air to lances submerged in the Absorber Reaction Tank for the oxidation reaction.
• The oxidation air is quenched with adequate amount of raw water to avoid nozzle plugging.
• Th **Example 18 The Oxidation System**
The Oxidation fans supply the compressed air to lances submerged in the
Absorber Reaction Tank for the oxidation reaction.
The oxidation air is quenched with adequate amount of raw water **Example 18 The Oxidation The Oxidation fans supply the compresse**
Absorber Reaction Tank for the oxidation in
The oxidation air is quenched with adequa
nozzle plugging.
The Oxygen in air reacts with CaSO₃ and o
Some o Forced Oxidation System

1 fans supply the compressed air to lances submerged in the

ction Tank for the oxidation reaction.

air is quenched with adequate amount of raw water to avoid

1g.

1 air reacts with CaSO₃ and The Oxidation fans supply the compressed air to lances submerged in the
Absorber Reaction Tank for the oxidation reaction.
The oxidation air is quenched with adequate amount of raw water to avoid
nozzle plugging.
The Oxyg The Oxidation fans supply the compressed air to lances submergee
Absorber Reaction Tank for the oxidation reaction.
The oxidation air is quenched with adequate amount of raw water t
nozzle plugging.
The Oxygen in air reac Absorber Reaction Tank for the oxidation reaction.

• The oxidation air is quenched with adequate amount of raw water to avoid

nozzle plugging.

• The Oxygen in air reacts with CaSO₃ and oxidizes it to CaSO₄.

• Some The oxidation air is quenched with adequate amount of inozzle plugging.

The Oxygen in air reacts with CaSO₃ and oxidizes it to Ca!
 Some of the CaSO₃ produced in the absorber is nat
 CaSO4. If left to natural oxid
-


```
CaCO<sub>3</sub> (Limestone) + H_2O = Ca(OH)_2 + CO_2Ca(OH)_2 + SO_2 = CaSO_3 + H_2O\textsf{CaSO}_{3} + 3H<sub>2</sub>O + 1/2O<sub>2</sub>= CaSO<sub>4</sub>.2H<sub>2</sub>O(Gypsum)+ H<sub>2</sub>O
```
Primary Dewatering System

Function:

-
-
-

HC Classifier: Hydro-cyclone Classifier

Secondary Dewatering System

- dewatering.
-

Tanks.

Flow Diagram of Gypsum Handling System

Purpose:

To transport the gypsum cake from the $V_{A_{\text{CUVM}}}\gtrsim_{E_{\text{CUT}}F_{\text{KTER}}L}$ Vacuum Belt Filter (Sec Dewatering Belt Filter) to the Gypsum Stack Area.
Filter) to the Gypsum Stack Area. $v_{A_{C_{U_{U_{M}}}}}\propto$ Filter) to the Gypsum Stack Area. Equipments: **Flow Diagram of Gypsum Handli**
 Purpose:

To transport the gypsum cake from the

Vacuum Belt Filter (Sec Dewatering Belt

Filter) to the Gypsum Stack Area.

Equipments:

Belt Conveyor - 1

Belt Conveyor - 2

Reversible **Flow Diagram of Gypsum Handli**
 Purpose:

To transport the gypsum cake from the

Vacuum Belt Filter (Sec Dewatering Belt

Filter) to the Gypsum Stack Area.

Equipments:

Belt Conveyor - 1

Belt Conveyor - 2

Reversible Reversible Belt Feeder Travelling Tripper -1 Purpose:

To transport the gypsum cake from the

Vacuum Belt Filter (Sec Dewatering Belt

Filter) to the Gypsum Stack Area.

Equipments:

Belt Conveyor - 1

Belt Conveyor - 2

Reversible Belt Feeder

Travelling Tripper - 1 Flap Gate-1 &2 Gypsum stack area

The Belt Filter removes the remaining moisture from the gypsum slurry before the gypsum is transferred to the Gypsum Handling System.

There are (1+1) Belt Filters supplied. Each Belt Filter has a dedicated vacuum system and a dedicated cake wash system. The gypsum slurry flows by gravity from the Primary Dewatering System to the Secondary Dewatering System.

NOx reduction techniques

-
- Primary Methods

1. Low NOx Burner

→ Are designed to control fuel and air mixing at ea

more branched & larger flame.

→ The initial fuel combustion occurs in a **fuel-rich** \triangle Are designed to control fuel and air mixing at each burner in order to create more branched & larger flame.
- ***** The initial fuel combustion occurs in a fuel-rich, oxygen deficient zone while the PA required for transport of fuel from Mill to furnace remains same.
- This delays the air / fuel mixing process & hence leads to partial combustion of coal.
- With insufficient oxygen available in primary combustion zone, most of the $O₂$ is consumed by carbon and hydrogen, leaving less available to form NO_x . .
- \triangle Hydrocarbons created during coal combustion react with already formed NOx to turn it into molecular nitrogen (N₂).
- For the branched & larger flame.

The initial fuel combustion occurs in a **fuel-rich, oxygen deficient zone** while

the PA required for transport of fuel from Mill to furnace remains same.
 \bullet This delays the air / fuel efficiency. Reduced combustion efficiency leads to an increase in CO emissions.

Primary Methods

2. Furnace Air staging

By using OFA systems, the availability of oxygen near the burner ar

→ Initially, 70-80 % of the oxygen is provided near burners, leadi formation.

- Primary Methods
 2. Furnace Air staging

By using OFA systems, the availability of oxygen near the burner area is controlled to minimize NOx

formation.

◆ Initially, 70-80 % of the oxygen is provided near burners, lead **2. Furnace Air staging**
By using OFA systems, the availability of oxygen near the burner area is controlled to minimize NOx
formation.
***** Initially, 70-80 % of the oxygen is provided near burners, leading to partial comb fuel. The relative of the secondary stage limits the production of NOx

The remaining OFA systems, the availability of oxygen near the burner area is controlled to minimize NOx

formation.

◆ Initially, 70-80 % of the oxygen is **Furnace Air staging**
using OFA systems, the availability of oxygen nea
mation.
Initially, 70-80 % of the oxygen is provided near
fuel.
The remaining oxygen is injected through OFA
is completed.
e relatively low temperatur **2. Furnace Air staging**
By using OFA systems, the availability of oxygen near the burner area is controlled to minimize NOx
formation.
 \div Initially, 70-80 % of the oxygen is provided near burners, leading to partial com **2. Furnace Air staging**
By using OFA systems, the availability of oxygen near the burner area is controlled to minimize NOx
formation.
 \bullet Initially, 70-80 % of the oxygen is provided near burners, leading to partial co
-

Post Combustion techniques/ Secondary Methods

Selective Non-Catalytic Reduction (SNCR)

Post Combustion techniques/ Secondary Methods

Selective Catalytic Reduction (SCR)

Example SCR System for NO_x Control in a Boiler Figure 7.

Thanks

Any question?

R K Aneja (Visiting Faculty) Former AGM O&M NTPC rkaneja2019@gmail.com M 9650994145